Efficient Bimolecular Mechanism of Photochemical Hydrogen Production Using Halogenated Boron-Dipyrromethene (Bodipy) Dyes and a Bis(dimethylglyoxime) Cobalt(III) Complex.

نویسندگان

  • Randy P Sabatini
  • Brian Lindley
  • Theresa M McCormick
  • Theodore Lazarides
  • William W Brennessel
  • David W McCamant
  • Richard Eisenberg
چکیده

A series of Boron-dipyrromethene (Bodipy) dyes were used as photosensitizers for photochemical hydrogen production in conjunction with [Co(III)(dmgH)2pyCl] (where dmgH = dimethylglyoximate, py = pyridine) as the catalyst and triethanolamine (TEOA) as the sacrificial electron donor. The Bodipy dyes are fully characterized by electrochemistry, X-ray crystallography, quantum chemistry calculations, femtosecond transient absorption, and time-resolved fluorescence, as well as in long-term hydrogen production assays. Consistent with other recent reports, only systems containing halogenated chromophores were active for hydrogen production, as the long-lived triplet state is necessary for efficient bimolecular electron transfer. Here, it is shown that the photostability of the system improves with Bodipy dyes containing a mesityl group versus a phenyl group, which is attributed to increased electron donating character of the mesityl substituent. Unlike previous reports, the optimal ratio of chromophore to catalyst is established and shown to be 20:1, at which point this bimolecular dye/catalyst system performs 3-4 times better than similar chemically linked systems. We also show that the hydrogen production drops dramatically with excess catalyst concentration. The maximum turnover number of ∼ 700 (with respect to chromophore) is obtained under the following conditions: 1.0 × 10(-4) M [Co(dmgH)2pyCl], 5.0 × 10(-6) M Bodipy dye with iodine and mesityl substituents, 1:1 v:v (10% aqueous TEOA):MeCN (adjusted to pH 7), and irradiation by light with λ > 410 nm for 30 h. This system, containing discrete chromophore and catalyst, is more active than similar linked Bodipy-Co(dmg)2 dyads recently published, which, in conjunction with our other measurements, suggests that the nominal dyads actually function bimolecularly.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photophysics of BODIPY Dyes as Readily-Designable Photosensitisers in Light-Driven Proton Reduction

A series of boron dipyrromethene (BODIPY) dyes was tested as photosensitisers for light-driven hydrogen evolution in combination with the complex [Pd(PPh3)Cl2]2 as a source for catalytically-active Pd nanoparticles and triethylamine as a sacrificial electron donor. In line with earlier reports, halogenated dyes showed significantly higher hydrogen production activity. All BODIPYs were fully cha...

متن کامل

Photoinduced charge separation in wide-band capturing, multi-modular bis(donor styryl)BODIPY-fullerene systems.

A new series of multi-modular donor-acceptor systems capable of exhibiting photoinduced charge separation have been designed, synthesized and characterized using various techniques. In this series, the electron donor was a BF2-chelated dipyrromethene (BODIPY) appended with two styryl linkers carrying two electron rich triphenylamine or phenothiazine entities. Fulleropyrrolidine linked at the me...

متن کامل

Efficient supramolecular synthesis of a robust circular light-harvesting Bodipy-dye based array.

We herein present the supramolecular construction of a completely fluorescent unquenched multichromophoric wheel consisting of boron dipyrromethene dyes arranged perpendicularly to the circular plane.

متن کامل

Boron dipyrromethene (BODIPY) functionalized carbon nano-onions for high resolution cellular imaging.

Carbon nano-onions (CNOs) are an exciting class of carbon nanomaterials, which have recently demonstrated a facile cell-penetration capability. In the present work, highly fluorescent boron dipyrromethene (BODIPY) dyes were covalently attached to the surface of CNOs. The introduction of this new carbon nanomaterial-based imaging platform, made of CNOs and BODIPY fluorophores, allows for the exp...

متن کامل

Co-self-assembled nanoaggregates of BODIPY amphiphiles for dual colour imaging of live cells.

Co-self-assembled vesicular nanoparticles of two structurally comparable amphiphilic boron-dipyrromethene (BODIPY) dyes with dequenchable dual colour fluorescence were prepared for ratiometric imaging of live cells.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 120 3  شماره 

صفحات  -

تاریخ انتشار 2016